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This investigation 1s concerned with the forced, perilodic vibration of a
homogeneous, isotropic, uniformly thick plate with free edges. It 1s assumed
that the plate consists of an arbitrary shaped, simply connected region bounded
by a curve with differentiable curvature. On the basis of conslderations
given in (1 and 2], the problem 1s reduced to a Fredholm integral equation

of the second kind. The kernel of the resultant integral equatlon is expressed
in terms of known special functions. The existence of & solution is investi.-
gated.

1. Assume that the plate occupies an arbitrary, simply connected region
S in the plane 2 = x + ity , and that the curvature of the bounding curve
L 1s everywhere differentiable. The coordinate origin is taken to be inside
the regilon S . The amplitude of the forced vibrations willl be written as
asum w(z,y) = u(r,y) + u(z, ¥), where u,(z,y) 1s the particular solution
of the equation, and wu(x,y) must satisfy Equation
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with the following boundary conditions (*):
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Here, A 1s related to the frequency, 6 1s the angle between the outward
normal and the x-axis and ¢ 1s Poisson's ratio. The first condition in
(1.2) implies the vanishing of the bending moment on the boundary L ; the
second condition implies the vanishing of the transverse shear resultant.

We will seek a solution u(x,y) in integral form

u(z, y)= \ [vi(s) F1(s, %, y) + va(s) Fa(s, x, y)] ds (1.3)
L

Here v,(S) and val8) are unknown density functions; tne kernel func-
tions F,(8,x,y) may be expressed as

E) Forughe static deflection case, the boundary condltions become simplified
3 and .

1084



Vibrations of plates with free edges 1085

Fi(s, 2, y)=%§ g, @™ +g; () e @] (=1, 2) (1-4)

—oc

nm@)=iacs —ecs Va2 A3, 71ofa)=iac;—cs Va2 — A%, 7* = iat’(t —z)

c1 = Re [t' (t — 2)], ca=Im[t'(t—2z)] (t=E+in)
where t 1s a generic boundary point and the prime denotes differentiation
with respect to & . The radicals in the preceding equations are either

positive real or posltive imaginary. It is not difficult to show that the
function u(x,y) in (1.3) satisfies Equation (1.1). The coefficients g , (a)
are later chosen in such & manner that substitution of u(x,y) into the’
boundary conditlions leads to Fredholm Integral equations of the second kind.

The boundary condltions wlll now be transformed so as to simplify the
procedure of obtaining the coefficlents gtk(ax By differentiating the first
condition in (1.2) with respect to & and combining the result with the
expression for the moment M w(¢,)] at a certain point ¢, on the boundary
L , we obtain (when the orders of the hilghest-order derivatives are the same
in both boundary conditions the procedure of obtaining the coefficients
8, x (®) becomes simplified [2])

d___Md sl"’l + M [w(t,)] =0 (1.5)

Since the solution belongs to the class of single-valued functions, inte-
gration of (1.5) with respect to & , taken along the boundary L , estab-
lishes the equivalence of (1.5) with the first condition in (1.2). By using
(1.5) together with the second condition in (1.2), the boundary conditions
are formulated in terms of third-order differential operators.

Note . The following two integral relations for the vibration ampli-
tude may be obtained from (1.2)

&Q(w)ds:\%ds:& RM(w)ds:O (1.6)
L L L

Transforming the contour integrals in (1.6) into area integrals and noting
that w(x,y) must satisfy Equation AAw — A%w = p (z, y), We obtain

A‘ggw(x, y)dS:—SSp(x, y)ds, N‘ngw(z‘, y)dS:-——SSzp(:c, y)ds 1.7)
8 8 S 8

Here P(x,y) 1s the amplitude of the distributed load divided by the flex-
ural rigidity of the plate. The first relation in (1.7) pertains to the
displacement amplitude of the mass center of the plate; the second pertains
to the angular rotation of the plate as a rigid body. For A = 0, (1.7)
ylelds the necessary conditions for the exlstence of a:solution in the case of
static deflection of the plate [4]. We will assume that the resultant force
and moment (right-hand sides in (1.7)) are equal to zero (the general case
is reducible to the one under discussion).

We will write the functions F,(8,x,y) and F,(8,x,y) 1n the form
D

2
Fi(s, 2, 9) = Reg lg; 16" +g; 4 ¥ da + 1.8)

(1]
oc

2 .
+ 2 Re 18, 4 g, @dn (=1,2)
D

Here D 1s a sufficliently large positive number. The singularities of the
functions F, (e,x,y) are contained in the second terms. For large values
of a , the coefficlents ¢,,, may be expanded
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In order to investigate the singularities of the functions Fy (s,x,y) and
Fay(e,x,y) , use will be made of the relations

o.cwzit’?(’—t)zln(t——z)—}—-u S eﬁ—ﬂ— inH ' (Ar) (1.10
2 as 2 , ) _wvdz—mﬁ_l o (Ar) (1.10)
eYl (a) g eY! (a) 'r] p— y
Im& s de=I,(A)®+ .., ImS a =T (M) D4, O= g

D D —— .
r=VE—+y—1?
Here Hy” (A1)  1s the Hankel function of the second kind while Jo (A7)
and I, (Ar) are the ordinary and modified Bessel functions of the first kind,
respectively. The dots represent terms having continuous third derivatives.

From (1.9) and (1.10;, we obtain the principal parts of the functions
F,(8,x,y) and F,(s,x,y) ; denoting these by I, and TI,, we have

I‘1=—2—ft£{lm [t?(z— )% In (t — z)] 1;6 rz(D}

Fz=—~k?2{(1+c)Re[t','(z_—t)_’ln(t__:_z)] + (1——6)r21nr}

(1.141)

2. Introduce the complex density function o (t) = v, 4 iv,, then the prin-
cipal part of the function u(x,y) in (1.3) may be written

1 -
u* (z, y) = ES[m (8) (T1 — iT3) + @ (2) (Ty + iTa)] ds (2.1)
L

We now combine the boundary conditions (1.2) into the following single
complex equation

8 t
d%u — 0%t Bu —
Guw=M(u i u)yds=2{1—o){ % —=—1t2— | —8 — =
@=Mw+i{Qua=2( )[ i =1 ()
s (2.2)
f(t):—M(uo)—iSQ(uo)ds, u=i’+:

Taking into account the fact that ‘relation (2.2) is obtainable from con-
dition (1.5) and the second condition in (1.2) by means-of integration with
respect to 8 along the boundary, we arrive at the following new density
function in (2.1):

t
Q) = gm(t)dt
t
a
Integrating by parts and neglecting the terms which contain no singulari-

ties, we arrive at the following modified representation of the principal
part of u(x,y)

1 . Y z z
u* (5, 9) = — 7 Im {&Q(t) =) [m (1—5)+*m(1—5) - x] dt} 2.3)
i
We will assume that Q(t¢) satisfies a HOolder condition on L . The ana-
lytic functions ¢(z) and y(2z) which, in_accordance with Goursat's formula,
correspond to the biharmonic function u*(x,y) are equal to
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‘P(Z)=2Lm89(t)ln(1—ti)dt, v =1 (2)
1 __* z _ _ (2.4)
X(z)=27i{"&9("("‘z’[ln (1—7)-*1]'” —Sﬂ(t)t in(1—7) dt}
Introduce the fﬁ;ntions g
Ty (b, 1, 5)=— 2 [N (br) + K (Ar) + (Ja (br) — Ty (A7) (i@ —m )]

Ia(A, ¢, 2) = % [N (Ar) — K (Ar) 4 (Jo (AF) - Iy (Ar)) (i® — In £)] (2.5)

N (Ar) = No(br) — Jo (ir) (In o A+ C), K (Ar) = Ko (Ar) + Lo (Ar) (In Yo b 4 €)

Here No(Ar) is the Bessel function of second kind of order zero, Ko (Ar)
is the modified Bessel function of second kind, and ¢ 1s Euler's constant.
The funections 0, (\,%,z) (¢ = 1, 2) satisfy Equation (1.1), and may be writ-
ten in the form

(A, 2, 2) =12 [m (1 —%) _1] 4+ P (M ¢, 2)

Oa(h £, z)=In (1—%)+p, ¢, 2) (2.8)
Here P,(),t,z) and P_(\,%,z) are entire functions of the parameter 1
which vanish when A = 0 and which have third order continuous derivatives

with respect to ¢t and & . In addltion, introduce the two functions

Er (M, 8, tg) = Pi(My 1, o) + %P1(R, 8, tg) — T[;- [NV (Apo) + K (Apo)] @.7)

Es(h, 8, t) = Py (h, 2, to) + %P5 (A, 1, o) -+ N (Apo) — K (Apo)y  Po? = (ts — B) (fg — B)

Here B 18 some fixed point in the z-plane, not lylng on L . By taking
into account (2.6), the sought function u(x,y) whose principal part 1s
u*(x,y) is easily constructed. This function takes the form

i T 7] —_ aVv (A
u(@ )=z m {00 57 (MG, & 9+ L 1 )] dt—A(sz)—éﬁL’}—
P z
V (Ary) % — 8V (Ary) Buy —
—mL [Q()ha(A, t) — Q) ha (A, 2)] dt 4 T—=o)B() Satat—’ t3dt (2.8)
L

where the following notation has been used

8 o3V (hro) - A16ni
A(Q) = SQ(z)dt, B(M)=1—5 g sat;z;o) t%dt (B {0) = 13;)
L

4 - _
Vr) =55 (NGro) + K(bro)l,  rd=2z,  pt=(:—B)E—B)

2 - 4 (s (h, ¢, bo) -,
hi (A, t) = =9 SEl (A, ¢, to) to%dte, ha(A, t) = 1—5 S ’055’ 1y%dto
L L

The right-hand side of (2.8) holds for all values of A except for the
zeros of B(1\).

Utilizing the Sokhotski-Plemel] formulas, we obtain the limiting values
of the derivatives 32,,4 920z, 0%u/ 9zt and PP/ 9z9:2 as z approaches the
boundary point I, ubstituting these values into the boundary condition
(2.2), we arrive at the following Fredholm integral equation of the second

kind 1 _
#Q (to) -+ 57 S[Q () Gr (A 8, to) + (&) Ga (M, £, to)] dt = f1(to) (2.9)
L
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Here

_ﬁ_ t—1 2'5_;0’2 0E, (A:, t, to) -, 0Es (M, t, to)
Gi(M 1) =5 ln-t_io—{—u i —% o, J-p2 o

At ¥ - GV (A
Ty ) Bulh b Wl Ty iy )

1y

_.d t—ty t2—1% 2,[ 9Es(Mt to) -, 0% (A, ¢t L)
G (M, 8, to) = te 7 == == “[ — o O e
2( 0)‘ 0 dt t——-to t——to + n ato 0 atoa
to
4 Saag,(x, L ‘°)“'2d] G [V (Aro)]
g gtp WA )BM

he (A, t)

f (o) G [V (Aro)] g 08uy =

AU==F—s~T—arBM ) oais " "
. The kernels and the right-hand side of the above equation are continuous
functions of ¢ and ¢, (it easily seen that their continuity is guaranteed
by the presence of the last two terms in (2.8)). We will now show that when
A = 0 Equation (2.9) has a unique solution. To prove this assertion, it is
sufficient to show that the corresponding homogeneous equation

1 t—ty 862 (— t—1¢
uQ(to)+mlSQ(t)dln E__t:+2°—m]§g(t)dt__z:+
+—1—. S[)(.Q(t)—{-ﬂ(t)] R S + Rty, A(Q)] =0 2.10
ZﬂLL t— 1o ( )

has. only the trivial solution. Define Rg[t, 4(Q)]

1—5 21 11 '3
Let Qo(t) be a solution of Equation (2.10); the corresponding functlions
(z) and ¥(z) in (2.4) will be denoted by ¢o(z) and ¥,{(z). Then Equation
2.10) may be written as:

d ——
7t [%@o () = 1o’ (t) — Yo (1)] -+ R [t, A(R)] =0 2-11)

Integrating (2.11) with respect to ¢ along the closed contour I and
taking into account Equations

%] 2i re 1 1+ dt
R X a= 1‘6(3), g v == 2 ST (2.12)
h t —3 K t;2 t 1-—-6L t

v 1
L

we obtaln

)  dt 4r, if 8 1s inside §
8 (8) A4 (00 — (1 + ) AT |5 =0, 5B ={ o 1e o 1o oretae o

L (2.43)

By combining (2.13) with its conjugate, we obtain a system of homogeneous
linear equations in A4 (Qy) and (. In order that the determinant of the
system be nonzero, we must have o

'3t 5 (B) o
—_— 214
| { =g 1= (249)
L
The integral in (2.1%) 1is a function of B , so that (2.14) can obviousl¥
always be satisfied by an appropriate choice of 8 . Upon satisfying (2.14),

we have A(,) = O
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From the above considerations, it 1s clear that (2.11) is equivalent to
the following two equations:

%o (£) — @0’ (£) — o (t) = const, SQG (t)dt =0 (2.15)
L

Integrating by parts the expresslons for the functions om,(2) and 1y, (2)
and taking into account the second relation in (2.15), we obtain

t

i 1 1 ‘
Po(2) =—5 891 (¥ (th_ T) d, ()= \ Qo (2) dt
7 \ ) 1 fa . (2.16)
® tdt
Wo(s) = 5 \ B (725 — 1) e+ g | Qo) T

L L

Then, proceeding as in [5 and 6], we can show that 0, (¢) = const , and,
consequently, Q0o,(Z) = O everywhere in I . Whence, based on Tamarkin's
theorem [7], the exlistence of a solution of the integral equation (2.9) fol-
lows for nearly all values of the parameter i .
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